
The Clinical Microbiology Laboratory: a Fundamental Resource for Infection Preventionists!

Janet A. Hindler, MCLS MT(ASCP) F(AAM) UCLA Health (retired) LA County DPH, Microbiology Laboratory jhindler@ucla.edu

At the conclusion of this program, you will be able to:

- Describe the primary role of a clinical microbiology laboratory; focus on bacteriology.
- Explain how improperly collected specimens can contribute to misleading results.
- List examples where bacteria reported may NOT be contributing to an infection.
- Discuss tests used to determine if a bacterium is susceptible or resistant to an antimicrobial agent.
- Describe a cumulative antibiogram and how this report can be used to guide empiric therapy and monitor % of bacteria susceptible (%S) to specific antimicrobial agents.

Scenario: Physician sends a specimen to the microbiology lab. What does he/she want to know?

> Does the specimen contain pathogens? What type? How many?

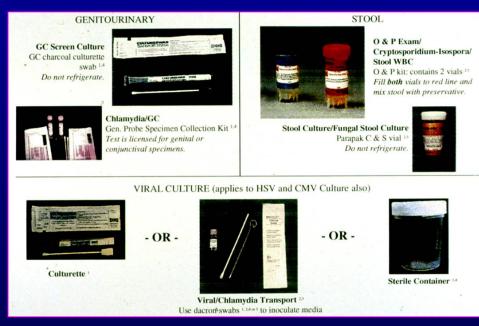
> > What are the antimicrobial susceptibility profiles of the pathogens in the specimen?

Scenario:

IP practitioner / epidemiologist reviews microbiology laboratory reports.

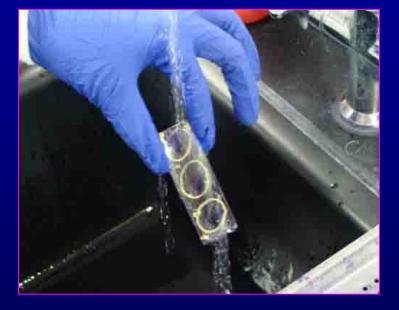
What does he/she want to know?

Could the pathogens isolated have been acquired while the patient was in the facility?

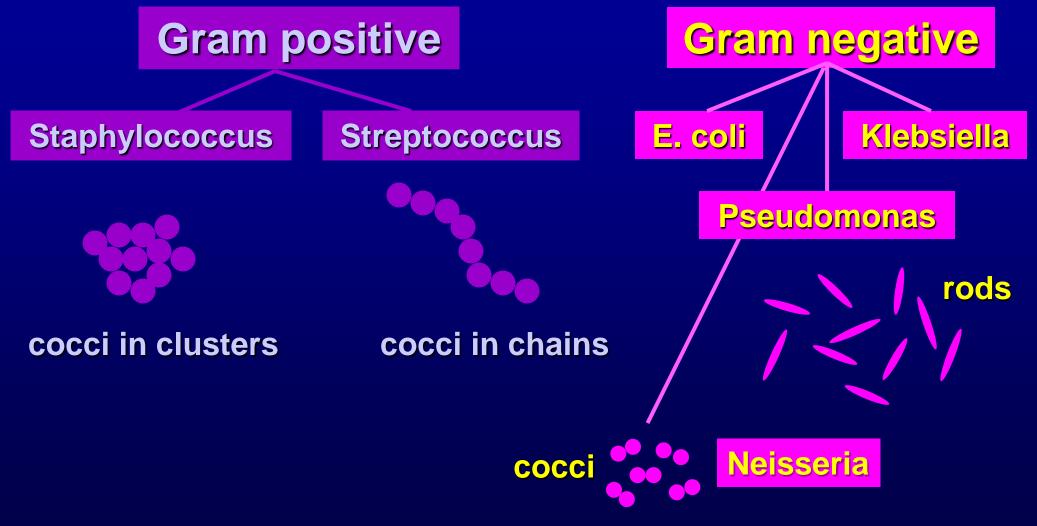

> What can be done to prevent further spread of the pathogens?

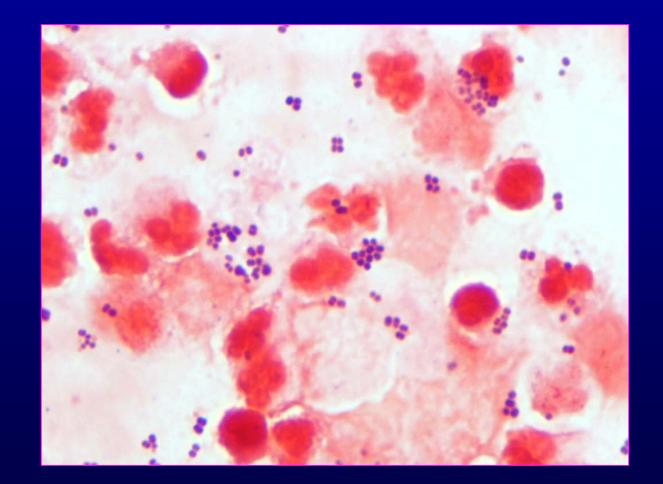
= some key messages!

Examining Patient Specimens for Microorganisms

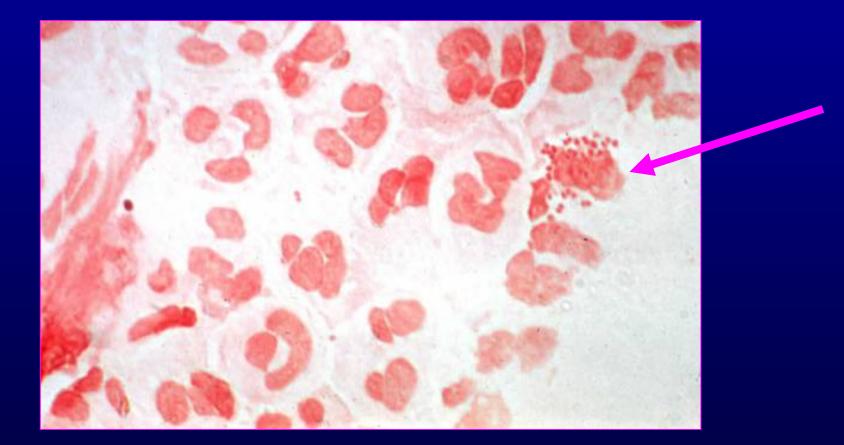

Instructions for collecting / transporting specimens for microbiology tests...

Processing specimens in a biological safety cabinet


Perform / Report Direct Gram Stain for Bacteria



- Report results within a few hours
- Quick insight into possible cause of an infection


Gram Reactions for Select Bacteria

Direct Gram stain (pus from wound): Grampositive cocci in clusters + white blood cells

Direct Gram stain (urethral discharge): Gramnegative diplococci (gonorrhoeae) within white blood cells

Place inoculated plates in incubator...

Should I identify these bacteria? Should I perform antimicrobial susceptibility tests on them?

Criteria Used to Identify Bacteria

Traditional methods:

- Gram stain and microscopic exam
- Growth rate and colony appearance on various types of agar media
- Reactivity with various chemicals / reagents

Modern (molecular) methods:

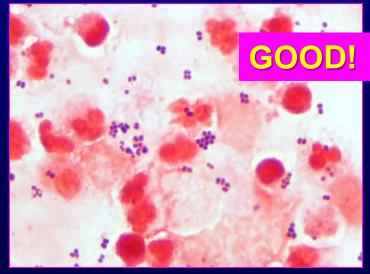
- DNA / RNA content of microorganisms
- Protein profile (MALDI-TOF) of microorganisms

MALDI-TOF = Matrix-assisted laser desorption ionization – time of flight mass spectrometry

Sick Patient!

- 85 year old
- Sick for 3 days; getting progressively worse
 - Shortness of breath
 - Fever, chills, sweats, productive cough
- Temperature of 102°F
 - Sputum cultures
 - Blood cultures

Send sputum NOT saliva; send 2 blood cultures; appropriate volumes!



Direct Gram Stain Assess Sputum Specimen Quality

- If saliva vs. sputum collected, may NOT recover "pathogens"
 Prepare direct Gram stain (put specimen on slide)
- Count number of squamous epithelial cells (SEC)

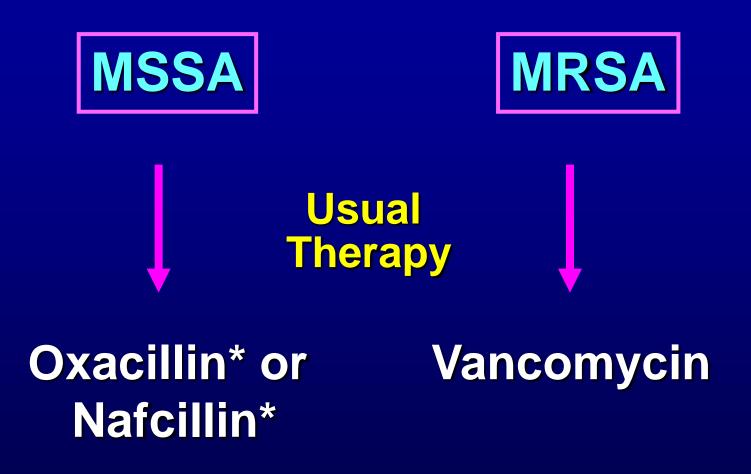
	Se : 1 20		. *
			sine.
1	1.0		an The
			1.5
	0		
2	4.00	1	i je ka

# SEC / low power field	Interpretation
<10	No significant "mouth" contamination
≥10	Indicates poorly collected specimen

Direct Gram Stain Results

Physician thinks staphylococcus!

Many WBCs Many Gram-positive cocci in clusters Moderate normal oral flora


When Staphylococcus suspected...

Questions:

- Is this Staphylococcus aureus?

- If yes, is this methicillin-resistant *S. aureus* (MRSA) or methicillin-susceptible *S. aureus* (MSSA)?
- Is this another species of Staphylococcus, typically lumped into "coagulase-negative staphylococci" (CoNS) group?
 - Often contaminant; less clinically significant than MRSA or MSSA

For serious infections....

*Methicillin very similar but no longer available

Common Lower Respiratory Tract Pathogens

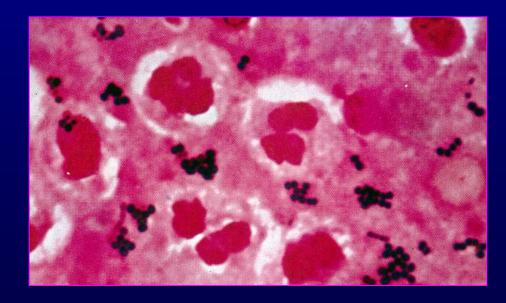
- Community-acquired pneumonia (CAP)
 - Streptococcus pneumoniae
 - Haemophilus influenzae
 - Moraxella catarrhalis
 - "Atypicals" Mycoplasma pneumoniae, Chlamydophila pneumoniae, and Legionella pneumophila
 - Often more difficult to recover / identify
- Hospital-acquired pneumonia (HAP); most often ICU or ventilator-associated
 - Klebsiella pneumoniae
 - Pseudomonas aeruginosa
- Either CAP or HAP
 - Staphylococcus aureus (MRSA or MSSA)

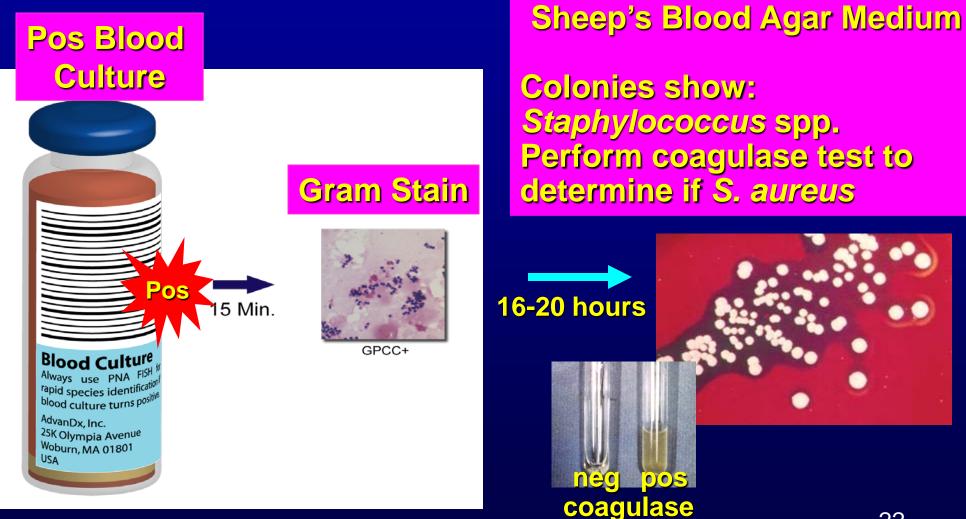
Yeast uncommon cause of pneumonia or other respiratory tract infection unless present in large quantities and/or immunosuppressed.

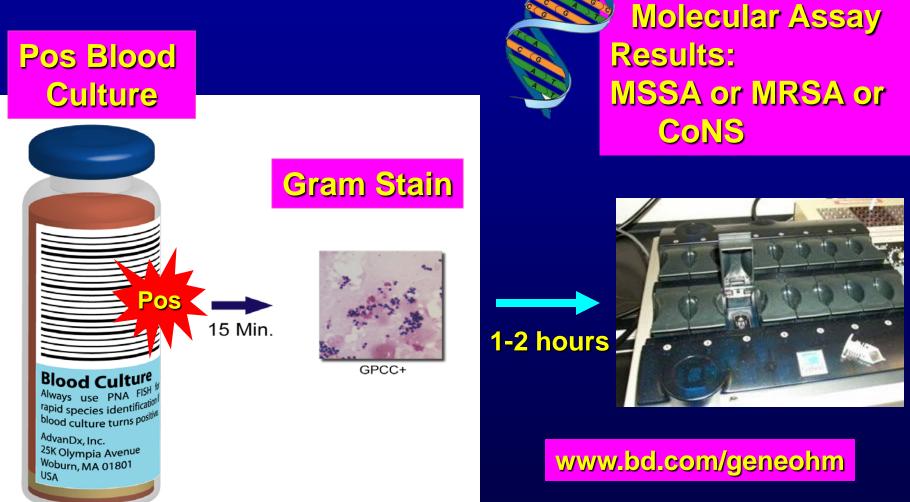
Blood specimen for bacterial culture: blood is injected directly into bottle of broth at bedside and sent to the lab.

> Timing – collect before antibiotics given Volume – check instructions; 2 sets!

Bottles are placed in blood culture instrument and continuously monitored. If bacteria are present, they multiply, react with "indicator" and sound an alarm when a threshold is reached.


"Positive" blood cultures are Gram stained, subcultured and subjected to other "tests"!


Preliminary Report


Gram stain: gram-positive cocci in clusters

Blood "Traditional" Culture Workup (1)

Blood "Molecular" Culture Workup (2)

Sick Patient (Blood Culture)

Final Report with Optional Comment

Gram Stain: Gram-positive cocci in clusters Culture: Staphylococcus aureus (MRSA) Clindamycin R Daptomycin S S Linezolid R Oxacillin Vancomycin S

Case

"MRSA isolated. Please check infection control policies."

Blood Culture Contaminants

- Coagulase-negative staphylococci (CoNS)
- Diphtheroids
- ♦ Bacillus spp.
- Propionibacterium spp.
- Viridans streptococcus
- Micrococcus spp.

Usually, for these bacteria to be considered as causing infection, two sets of blood cultures must be positive PLUS patient must show specific signs and symptoms of bloodstream infection.

Urine Collection / Transport

Must test within 2 hours of collection if stored at room temp
Must test within 24 hours if refrigerated
Must test within 2 days if in boric acid preservative

If UTI symptoms – send for culture!
Best if culture performed ONLY on specimens with significant pyuria (auto-reflex to culture); e.g., IF positive for leukocyte esterase and/or nitrite tests which suggest infection, THEN culture.

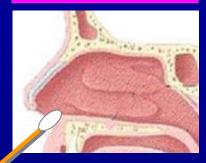
Most Common Pathogens Urinary Tract Infections

Community acquired

- *E. coli* most common
- Klebsiella, other Enterobacteriaceae
- Staphylococcus saprophyticus Enterococci; staphylococci

Hospital acquired

- E. coli, Klebsiella, other Enterobacteriaceae
- Pseudomonas aeruginosa



Spot indole test (positive)

Surveillance Cultures (vs. Diagnostic Cultures)

- Lab processes differently
- Must order as "surveillance culture"
- Must send appropriate specimen
- Only tested for "targeted" pathogen (e.g. MRSA)

MRSA

CRE = carbapenem-resistant Enterobacteriaceae

Tests to Detect Antimicrobial Susceptibility

When do we do antimicrobial susceptibility tests (ASTs)?

- If 1 or 2 potential pathogens isolated from culture
- If it is likely that the bacteria are causing an infection

 If bacteria have a susceptibility pattern that is unpredictable

Urine Culture

Report: > 10⁵ CFU/ml *E. coli*

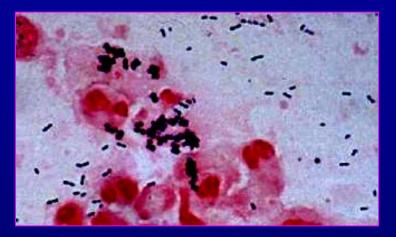
Significant quantity of potential pathogen. *E. coli* common pathogen in urinary tract infections. No contaminants.

Perform AST!

Urine Culture

Encourage new specimen if UTI suspected!

Report: >10⁵ CFU/ml *Corynebacterium spp.* 40,000 CFU/ml *E. coli* 10,000 CFU/ml Yeast 10,000 CFU/ml *Lactobacillus spp.*


Likely contaminated culture. (high numbers of species that are unlikely pathogens). Do NOT perform AST!

Sputum Culture

Gram Stain: Many oral flora Many Gram positive diplococci Many WBCs

Culture: Many Normal Flora Many Streptococcus pneumoniae

Good correlation of Gram stain with culture.
Significant quantity of potential pathogen.
S. pneumoniae relatively common pathogen in respiratory tract infections.

Perform AST!

Foot Wound Culture

Send

"pus"

34

Gram Stain: Many Gram positive cocci in clusters Many pleomorphic Gram positive rods No WBCs

Culture:

Many coagulase-neg staphylococci Many diphtheroids Few *E. coli-*lik*e* colonies Few *Proteus-*like colonies

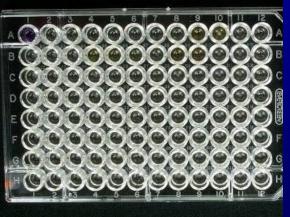
Poor correlation of Gram stain with culture. Small quantity of potential pathogens. "Skin flora" suggests likely contaminated culture. Do NOT perform AST!

Throat Culture

Many Group A Streptococcus "Group A Streptococcus is always susceptible to penicillin."

Not necessary to perform AST on bacteria that are always (predictably) susceptible to the antimicrobial agents typically prescribed.

Why do we NOT do susceptibility tests on every potential pathogen isolated?


- AST results on a report suggest that bacteria are causing an infection
- Reporting results when NOT needed may lead to:
 - Unnecessary or inappropriate therapy
 - Selection of resistant bacteria
 - Put patient at risk for *Clostridium difficile*
 - Failure to look further to identify true cause of the patient's problem

Disk diffusion (Kirby Bauer)

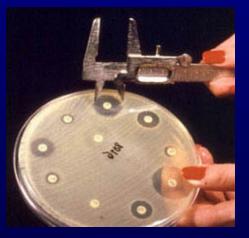
Antimicrobial Susceptibility Tests

Broth microdilution MIC

MIC = minimal inhibitory concentration (lowest concentration of drug that inhibits growth of the test bacteria) **Reported results:**

- Susceptible (S) drug likely to work providing it can get to the infection site
- Resistant (R) drug won't work
- Intermediate (I) drug may or may not work depending on site of infection and patient's status

Pick colonies



Prepare inoculum suspension

Remove sample

Disk Diffusion Testing

Measure zones

Swab plate

Add disks

Incubate overnight

Zone Diameter "Breakpoints" (mm) Enterobacteriaceae

Drug	S	I	R
Ciprofloxacin	≥21	16-20	≤15
Gentamicin	≥15	13-14	≤12

	28th Edition
M100	
Performance Standards for Susceptibility Testing	Antimicrobial

CLSI, Clinical and Laboratory Standards Institute

Test/Report	Antimicrobial	Disk	Zone	Diamete	Categories er Breakp whole mn	oints,	Inter	Bre	Categories an rakpoints, µg/mL	id MIC		
Group	Agent	Content	s	SDD	1	R	S	SDD	1	R	1 (AL AL AND AL
PENICILLINS												This document in
A	Ampicillin	10 µg	217	-	14-16	≤13	£8	-	16	≥ 32	(4) Results of an used to predict r See general con	Laboratory Stand standards M02, N
0	Piperacillin	100 µg	≥21	-	18-20	≤17	≤16	-	32-64	≥128		
0	Mecillinam	10 µg	≥15	-	12-14	≤11	≤8	-	16	≥32	(5) For testing a urinary tract isol	A CLSI supplement for
B-LACTAM C	OMBINATION AGENTS											
8	Amoxicillin-clavulanate	20/10 µg	≥18	-	14-17	≤13	≤8/4	~	16/8	≥ 32/16		
8	Ampicillin-sulbactam	10/10 µg	≥15	-	12-14	≤11	≤8/4	-	16/8	≥32/16		
В	Ceftolozane- tazobactam	30/10 µg	≥21	-	18-20	s17	≤2/4	-	4/4	≥8/4	(6) Breakpoints regimen of 1.5 g	
B	Ceftazidime- avibactam	30/20 µg	221	-	-	≤20	≤8/4	-	-	≥16/4	regimen of 2.5	are based on a dosage g (2 g ceftazidime + 0.5 g ry 8 h over 2 days.
8	Piperacillin-tazobactam	100/10 µg	≥21	-	: 18-20	≤17	≤ 16/4	-	32/4-64/4	≥128/4	1999 - 1999 - 1998 (Pr. 1998	
0	Ticarcillin-clavulanate	75/10 µg	≥20	-	15-19	≤14	≤16/2	-	32/2-64/2	≥128/2		

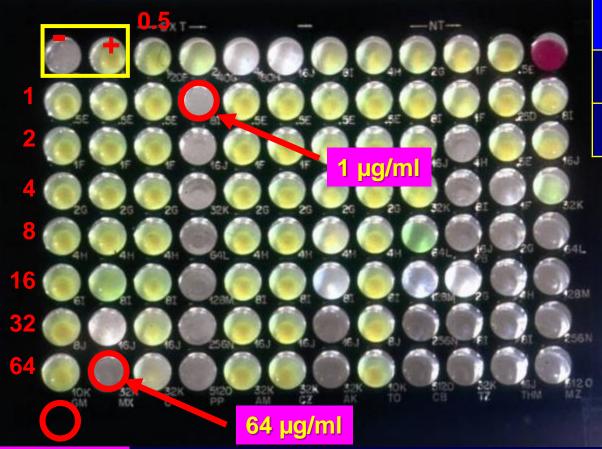
This document includes updated tables for the Clinical and Laboratory Standards Institute antimicrobial susceptibility testing standards M02, M07, and M11.

Si supplement for global application.

(8) WARNING: For Salmonella spp., and Shigella spp., 1st- and 2nd-generation cephalosporins and cephamycins may appear active in vitro, but are not effective clinically and should not be reported as susceptible.

(9) Following evaluation of PK-PD properties, limited clinical data, and MIC distributions, revised breakpoints for cephalosporins (cefazolin, cefazoline, cefazidine, cefa

Note that breakpoints for drugs with limited availability in many countries (e.g. moxalactam, cefonicid, cefamandole, and cefoperazone) were not evaluated. If considering use of these drugs for *E*: coli, Nebaelle sep. or Proteva spp. ESBL testing should be performed (see Table 3A). If isolates test ESBL positive, the results for moxalactam, cefonicid, cefamandole, and cefoperazone should be performed as resistant.


(10) Enterobacter, Citrobacter, and Serratia may develop resistance during prolonged therapy with 3rd generation cephalosporins as a result of derepression of AmpC #-lactamase. Therefore, isolates that are initially susceptible may become resistant within 3 to 4 days after initiation of therapy. Testing repeat isolates may be warranted.

A	Cefazolin	30 µg	≥23	-	20-22	\$19	≤2	-	4	: ≥8	(11) Breakpoints when cefazolin is used
		8-252-63	1000300		10000		1000				for therapy of infections other than
					1					1	uncomplicated UTIs due to E. coli, K.

>64 µg/ml

MIC "Breakpoints" (µg/ml) Enterobacteriaceae

Drug	S	I	R
Ciprofloxacin	≤1	2	≥4
Gentamicin	≤4	8	≥16

Susceptibility

	Morganella mor	ganii ^{Iso1}
	MIC (MCG/ML)	
Amikacin		
Ampicillin	R	R
Azithromycin		
Cefepime	<=1	S
Ceftazidime		a da constitui di Mananana anna
Ceftazidime/Avibactam		
Ceftolozane/Tazobacta m		
Ceftriaxone		
Ciprofloxacin	>=4	R
Colistin		
Ertapenem	<=0.5	S
Fosfomycin		2
Gentamicin	<=1	S
Imipenem		
Levofloxacin		
Meropenem		
Minocycline		
Moxifloxacin		
Nitrofurantoin	64	1
Oral Cephalosporins		
Piperacillin +	<=4	S
Tazobactam		
Tobramycin		
Trimethoprim/Sulfamet hoxazole	>=320	R

Lab Report

Review of S, I, R most important for IP For MIC tests, must report S, I, R with or without MIC value.

"Typical" *E. coli* - NO "R"!

Agent	#1	#2
Ampicillin	S	R
Cefazolin	S	R
Cefepime		R
Ceftriaxone		R
Ciprofloxacin	S	R
Ertapenem		S
Gentamicin	S	S
Meropenem		
Nitrofurantoin	S	R
Piper-tazo		S
Trimeth-sulfa	S	R

Broad Spectrum drug results suppressed when "S" to narrow spectrum drugs! Acquired "R" to all PO agents. Request fosfomycin – usually not tested routinely!

2 urine *E. coli* isolates

		4		
P0	en	ουτ	brea	Kſ

Agent	#1	#2
Ampicillin	S	R
Cefazolin	S	R
Cefepime		R
Ceftriaxone		R
Ciprofloxacin	S	R
Ertapenem		S
Gentamicin	S	S
Meropenem		
Nitrofurantoin	S	R
Piper-tazo		S
Trimeth-sulfa	S	R

#3	#4	#5
R	R	R
R	R	R
R	R	R
R	R	R
R	R	R
R	R	R
S	S	S
R	R	R
R	R	R
R	R	R
R	R	R

3 more *E. coli* isolates ALL CRE!

CRE = carbapenem-resistant Enterobacteriaceae

CRE = R to doripenem, ertapenem, imipenem OR meropenem

Bacterial Culture Urine (Edited)

40,000 CFU/mL Morganella morganii (A) Susceptibility Setup Date: 01/18/2018

<10,000 CFU/mL Klebsiella pneumoniae (A) Susceptibility Setup Date: 01/20/2018

Carbapenem Resistant Enterobacteriaceae (CRE).

This organism is positive for the KPC Carbapenemase. Infectious diseases consult strongly suggested. This patient requires contact precautions, consult HSIC 002.

Susceptibility

	Morganella mor	ganii Iso1	Klebsiella pneur	noniae ^{Iso2}	
	MIC (MCG/ML)		MIC (MCG/ML)		
Amikacin			16	S	
Ampicillin	R	R	R	R	
Azithromycin			>32	%	
Cefepime	<=1	S	>32	R	
Ceftazidime			>32	R	
Ceftazidime/Avibactam			<=2	S	
Ceftolozane/Tazobacta m			>32	R	
Ceftriaxone			>32	R	
Ciprofloxacin	>=4	R	>2	R	
Colistin			<=2	WT 1	
Ertapenem	<=0.5	S	>4	R	
Fosfomycin		2		S	
Gentamicin	<=1	S	16	R	
Imipenem			16	R	
Levofloxacin			>8	R	
Meropenem			>16	R	
Minocycline			16	R	
Moxifloxacin			>8	%	
Nitrofurantoin	64	1	256	R	
Oral Cephalosporins			R	R	
Piperacillin + Tazobactam	<=4	S	>128	R	
Tobramycin			16	R	
Trimethoprim/Sulfamet hoxazole	>=320	R	>4/80	R	

Lab Report

CRE with comments

Nitrofurantoin should not be used in patients with impaired renal function (Creatinine Clearance <60 mL/min) or in patients with suspected or confirmed pyelonephritis.

This Klebsiella Pneumoniae has unusual Carbapenem results; Infectious Disease consult suggested.

The Cumulative Antibiogram Report

Antibiogram = report that lists percent of isolates of common species susceptible (%S) to individual antimicrobial agents.

- Analyzes data from routine antimicrobial susceptibility tests performed in the clinical laboratory
- Separate report prepared for each healthcare facility
- Primarily used to guide empiric therapy
- Sometimes used to monitor resistance
 - Changes in %S from year to year
- Highly impacted by culturing practices
 - If cultures only done when patients fail therapy, antibiogram will...
 - not be representative of all isolates causing infection in a facility
 - overestimate "resistant" bacteria causing infection in a facility

Recommendations Preparation of Cumulative Antibiogram

- Analyze/present data at least annually
- Include only species with \geq 30 isolates of each species
- Include diagnostic (not surveillance) isolates
- Include the 1st isolate/patient; no duplicate patient isolates

Often difficult to get 30 isolates in LTCFs

Appendix E1. Cumulative Antimicrobial Susceptibility Report Example – Antimicrobial Agents Listed Alphabetically (Hypothetical Data)

Percent Susceptible													_		
Gram-Negative Organisms	No. Strains	Amikacin	Ampicillin	Cefazolin	Cefotaxime	Ceftazidime	Ciprofloxacin	Nitrofurantoin [†]	Gentamicin	Meropenem	Piperacillin- tazobactam	Trimethoprim- sulfamethoxazole	Tobramycin		
Acinetobacter baumannii	32	80	R	R	34	52	51	_‡	60	80	46	58	59]	
Citrobacter freundii	49	100	R	R	72	67	90	78	100	99	67	67	100		
Enterobacter aerogenes	31	100	R	R	68	69	92	85	91	99	74	95	91		
Enterobacter cloacae	76	99	R	R	61	62	92	81	90	99	77	84	90		
Escherichia coli	1433	99	36	68	96	94	72	98	91	99	51	65	92		
Klebsiella pneumoniae	543	99	R	72	91	92	84	74	94	95	86	81	94		
Morganella morganii	44	100	R	R	85	81	99	R	100	99	64	75	100		
Proteus mirabilis	88	100	87	80	99	99	89	R	90	100	70	73	93		
Pseudomonas aeruginosa	397	97	6	'Rc	outi	ine	" C	um	nuk	ati	ve	ant	ibi	OCI	ca l
Salmonella spp.	32	-													
Serratia marcescens	50	100	G	ene	Bla	ШУ.	al	1 15					<u>5 (1</u>	121	
Shigella spp.	33	-	64	-	100	100	95	-	-	100	84	69	-		
Stenotrophomonas maltophilia	72	R	R	R	R	63	6	R	R	R	-	98	R		

Memorial Medical Center 1 January – 31 December 2012 Cumulative Antimicrobial Susceptibility Report* Percent Susceptible

The percent susceptible for each organism/antimicrobial combination was generated by including the first isolate of that organism encountered on a given patient.

[†] Nitrofurantoin data from testing urine isolates only.

[‡] (-) drug not tested or drug not indicated.

Abbreviations: No., number; R, intrinsic resistance.

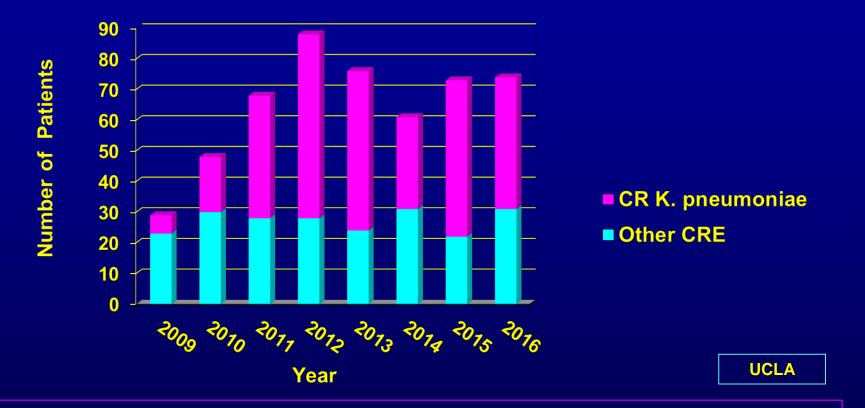
n)

E. coli - % Susceptible¹

Category	Ν	Cip	FM	T-S	CZ
All isolates	4167	77	93	71	92
18-40 yo female outpatient urine	797	90	95	79	96
>65 yo outpatient urine	1260	70	91	68	92

¹ First isolate/pt (CLSI M39-A4)

Cip, ciprofloxacin FM, nitrofurantoin T-S, trimethoprim-sulfamethoxazole CZ, cefazolin as surrogate for cephalexin (oral cephalosporins)


Routine Cumulative Antibiogram % Susceptible

Organism	N	Amp	P-T	Ceftriax	Erta	Mero	Amk	Gent	Сір	T-S
K. pneumoniae	450	R	88	85	95	98	98	92	88	82

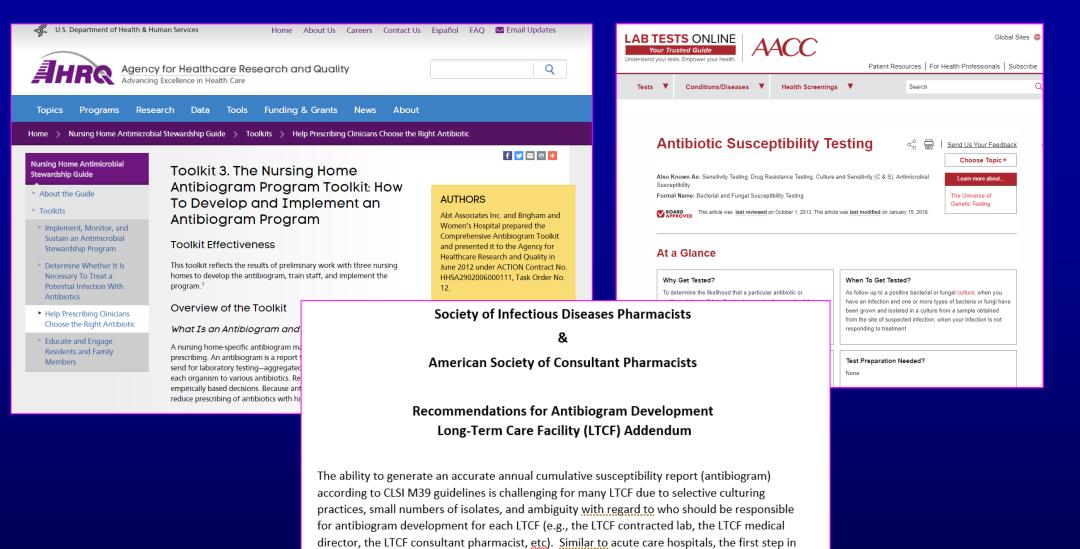
- Meropenem = carbapenem
- 98% "S"
- ≈ 2% CRE

CRE = carbapenem-resistant Enterobacteriaceae

Number of CRE Patients

Examine all isolates (not just first isolate/patient). Number of Enterobacteriaceae/year tested = approximately 5000 isolates.

CRE = carbapenem-resistant Enterobacteriaceae


2015 LOS ANGELES COUNTY ACUTE CARE HOSPITAL ANTIBIOGRAM

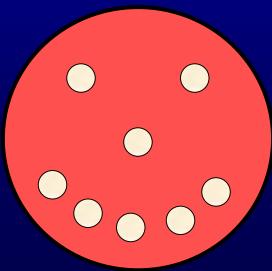
		Penicillins		Cephalosporins			Carbapenems		Aminoglycosides			Quinolone	Other
Percent Susceptible (Number of isolates tested)	# of all isolates tested (# of hogoltals reporting)	Ampidilin/ Sulbactam	Piperadilin/ Tazobactam	Ceftriaxone	Ceftazidime	Cefepime	Ertapenem	Meropenem	Amikacin	Gentamicin	Tobramydin	Ciprofioxacin/ Levofioxaxin	Trimethoprim/ Sulfamethoxazole
Acinetobacter sp.	3189 (66)	•	33 (1,873)	11 (1,475)	30 (2,184)	34 (1,864)	R	53 (1,561)	43 (2,004)	41 (2,970)	46 (2,126)	33 (3,024)	49 (2,859)
Citrobacter Freundii	1975 (43)	R	97 (1,823)	82 (1,869)	83 (1,503)	98 (1,713)	99 (1,156)	99 (1,142)	100 (1,536)	92 (1,924)	93 (1,138)	91 (1,975)	81 (1,939)
Citrobacter koseri	631 (23)	·	99 (631)	96 (631)	97 (427)	100 (456)	100 (223)	100 (184)	99 (389)	99 (631)	99 (428)	99 (631)	96 (601)
interobacter sp.	8122 (66)	R	82 (7,507)	80 (7,307)	82 (6,204)	96 (7,040)	96 (4,417)	99 (4,638)	100 (6,235)	97 (7,972)	96 (4,630)	96 (8,120)	92 (8,018)
scherichia coli	139212 (73)	55 (25,534)	93 (115,257)	86 (105,020)	86 (95,157)	86 (90,175)	100 (78,427)	100 (84,318)	99 (104,151)	86 (129,487)	81 (67,956)	70 (129,130)	66 (123,819
(lebsiella sp.	30655 (72)	÷	84 (25,586)	86 (23,006)	86 (19,120)	85 (19,895)	98 (15,578)	97 (17,025)	94 (22,223)	91 (27,934)	82 (16,128)	86 (28,047)	82 (26,934)
Morganella sp.	2235 (52)	÷	96 (2,233)	88 (2,055)	81 (1,811)	98 (1,921)	100 (1,148)	100 (1,127)	99 (1,913)	71 (2,234)	86 (1,358)	60 (2,231)	55 (2,154)
roteus sp.	16908 (68)		98 (15,836)	90 (15,682)	92 (13,067)	92 (13,832)	99 (9,018)	99 (9,903)	99 (13,470)	83 (16,554)	84 (10,176)	68 (16,738)	68 (16,491)
Providencia sp.	1618 (36)	•	73 (1,542)	66 (1,404)	55 (1,315)	77 (1,285)	88 (228)	90 (553)	91 (1,442)	11 (1,259)	14 (960)	11 (1,512)	46 (1,513)
Pseudomonas Ieruginosa	22804 (73)	R	83 (20,040)	R	82 (18,315)	84 (19,015)	R	82 (14,261)	95 (19,491)	83 (22,271)	91 (19,850)	69 (22,132)	R
erratia sp.	2676 (58)	R	91 (2,098)	90 (2,403)	91 (2,188)	97 (2,203)	97 (1,414)	98 (1,579)	97 (2,188)	97 (2,757)	85 (1,677)	88 (2,646)	97 (2,544)
itenotrophomonas naltophilia	1719 (50)	R	R	R	37 (848)	R	R	R	R	R	R	79 (1,052)	90 (1,548)

LA County Antibiogram 2015 Composite Data from Antibiograms from Acute Care Hospitals

the process of antibiogram development for LTCFs is to have a multidisciplinary planning meeting with all of the stakeholders in the LTCF in order to discuss and formulate a plan to

multidisciplinary group should be comprised of LTCF leadership, the LTCF medical director, LTCF consultant pharmacist, the LTCF lab provider, and representatives from the LTCF Antibiotic Stewardship Committee and local hospital, if applicable. Areas that should be addressed at the

meet the needs of each individual LTCF. For LTCF antibiogram development, this


1) the person responsible for preparing the antibiogram

planning meeting include identification of:

Summary

- Assessment of patient's clinical symptoms together with reliable clinical microbiology laboratory results are essential for accurate diagnosis of infections.
 - Reliable clinical microbiology laboratory results are dependent on:
 - appropriate collection and transport of specimens.
 - accurate identification and antimicrobial susceptibility testing.
 - good communication between healthcare providers and lab.
- Review of clinical microbiology laboratory results is key to identification of potential nosocomial transmission of microbes.
- Additional clinical microbiology laboratory tests may be needed for epidemiological investigations.
- A local cumulative antibiogram can help guide empiric therapy decisions and monitor "%S" for antimicrobial agents appropriate for common pathogens.

Thank You!

